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1 Introduction

This paper describes a numerical solution of Stocks
equations with a new boundary generalizes the will
known basis conditions, especially the Dirichlet and
the Neumann conditions. So, we prove that the weak
formulation of the proposed modeling has an unique
solution. To calculate this latter, we use the discretiza-
tion by mixed finite element method. Moreover, we
propose two types of a posteriori error indicator which
are shown to give global error estimates that are equiv-
alent to the true error. To compare our solution with
the some previously ones, as ADINA system, some
numerical results are shown. In this modeling flow
of porous media, it is essential to use a discretiza-
tion method which satisfies the physics of the prob-
lem, i.e. conserve mass locally and preserve continu-
ity of flux. The Raviart-Thomas Mixed Finite Element
(MFE) method of lowest order satisfies these prop-
erties. Moreover, both the pressure and the velocity
are approximated with the same order of convergence
[4, 6]. The discretization of the velocity is based on
the properties of Raviart-Thomas. Other works have
been introduced by Brezzi, Fortin, Marini, Dougla and
Robert [4, 5, 7]. This method was widely used for the
prediction of the behavior of fluid in the hydrocarbons
tank. A posteriori error analysis in problems related
to fluid dynamics is a subject that has received a lot
of attention during the last decades. In the conform-

ing case there are several ways to define error estima-
tors by using the residual equation. in particular, for
the Stokes problem, M. Ainsworth, J. Oden [9], R.E.
Bank, B.D. Welfert [10], C. Crestensen, S.A. Funken
[11], D. Kay, D. Silvestre [12] and R. Verfurth [13],
introduced several error estimators and provided that
they are equivalent to the energy norm of the errors.
Other works for the stationary Navier-Stokes problem
have been introduced in [14, 17, 18, 20, 16]. This
paper describes a numerical solution of Stokes equa-
tions with a boundary condition noted Ca,b. For the
equations, we offer a choice of tow-dimensional do-
mains on which the problem can be posed, along with
boundary conditions and other aspects of the problem,
and a choice of finite element discretization on a rect-
angular element mesh.

The plan of the paper is as follows. Section 2
presents the model problem used in this paper. The
weak formulation is presented in section 3. In section
4, we show the existence and uniqueness of the so-
lution. The discretization by mixed finite elements is
described in section 5. Section 6 introduced two types
of a posteriori error bounds of the computed solution.
Numerical experiments carried out within the frame-
work of this publication and their comparisons with
other results are shown in Section 7.
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2 Governing Equations

We will consider the model of viscous incompressible
flow in an idealized, bounded, connected domain in
IR2.

−∇2−→u +∇p = −→f in Ω. (1)

−∇.−→u = 0 in Ω. (2)

by the Ca,b boundary condition

a−→u + b(∇−→u − pI)−→n =
−→
t in Γ := ∂Ω (3)

We also assume that Ω has a polygonal boundary Γ :=
∂Ω , so −→n that is the usual outward-pointing normal.
The vector field −→u is the velocity of the flow and the
scalar variable p represents the pressure.

Our mathematical model is the Stoks system with
a new boundary condition noted Ca,b, ∇ is the gra-
dient, ∇· is the divergence and ∇2 is the Laplacien
operator,

−→
f ,
−→
t , a and b are the polynomials such

that,
−→
f defined in Ω and a and b nonzero defined on

∂Ω verify:
There are two strictly positive constants α1 and

β1 such that:

α1 ≤
a(x)

b(y)
≤ β1 for all x ∈ Γ. (4)

Remark . If a and b are two strictly positive constants
such that a << b then Ca,b is the Neumann boundary
condition and if b << a then Ca,b is the Dirichlet
boundary condition. for that a is called the Dirichlet
coefficient and b is the Neumann coefficient.

3 The weak formulation

We define the spaces:

h1 = {−→u : Ω→ IR/ −→u ; ∂
−→u
∂x

;
∂−→u
∂y
∈ L2(Ω)} (5)

H1(Ω) = [h1]2 (6)

L1
0(Ω) = {q ∈ L2(Ω)/

∫
Ω
q = 0} (7)

The standard weak formulation of the Stokes flow
problem (1) - (2)-(3) is the following:

Find −→u ∈ H1(Ω) and p ∈ L2
0(Ω) such that :

∫
Ω∇−→u : ∇−→v +

∫
Γ

a
b
−→u .−→v

−
∫
Ω p∇.−→v =

∫
Ω
−→
f .−→v +

∫
Γ

1
b
−→
t .−→v∫

Ω q∇.−→u = 0

(8)

for all −→v ∈ H1(Ω) and q ∈ L2
0(Ω).

Let the bilinear forms

A(−→u ,−→v ) =
∫
Ω
∇−→u : ∇−→v +

∫
Γ

a

b
−→u .−→v (9)

B(−→u , q) = −
∫
Ω
q∇.−→u (10)

Given the functional L : H1(Ω) −→ IR

L(−→v ) =
∫
Ω

−→
f .−→v +

∫
Γ

1

b
−→
t .−→v (11)

The underlying weak formulation (8) may be restated
as:

Find −→u ∈ H1(Ω) and p ∈ L2
0(Ω) such that :{

A(−→u ,−→v ) +B(−→v , p) = L(−→v )
B(−→u , q) = 0

(12)

for all −→v ∈ H1(Ω) and q ∈ L2
0(Ω).

4 The existence and uniqueness of
the solution

In this section we will study the existence and unique-
ness of the solution of problem (12), for that we need
the following results:

Theorem 1 There are two strictly positive constants
c1 and c2 such that:

c1∥−→v ∥1,Ω ≤ ∥−→v ∥J,Ω ≤ c2∥−→v ∥1,Ω (13)

where ∥−→v ∥J,Ω = [A(−→v ;−→v )]
1
2 (14)

∥−→v ∥1,Ω = [

∫
Ω
∇−→v : ∇−→v +

∫
Ω

−→v .−→v ]
1
2

= [ |−→v |21,Ω + ∥−→v ∥20,Ω]
1
2 . (15)

Proof. The mapping γ0 : H1(Ω) −→ L2(Γ), such
that γ0(−→v ) = −→v /Γ, is continuous (see [2] theorem 1,
2), then there exists c > 0 such that:

∥−→v ∥0,Γ ≤ c∥−→v ∥1,Ω ∀ −→v ∈ H1(Ω).

Using this result and (4) give, ∥−→v ∥J,Ω ≤
c2∥−→v ∥1,Ω for all−→v ∈ H1(Ω) with c2 = (β1c

2+1)
1
2 .

On the other hand, according to 5.55 in [1], there ex-
ists a constant ρ > 0 such that:

∥−→v ∥20,Ω ≤ ρ(∥∇−→v ∥20,Ω + ∥−→v ∥20,Γ.)
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Using (4) and ∥∇−→v ∥1,Ω ≤ ∥−→v ∥2J,Ω, give

c1∥−→v ∥1,Ω ≤ ∥−→v ∥J,Ω ∀−→v ∈ H1(Ω),

with c1 = (ρCα1
+ 1)−

1
2 and C = max{α1; 1}. ⊓⊔

This result allows us to prove that
(H1(Ω), ∥.∥J,Ω)) is a Hilbert space witch is obliged
condition for obtain the existence and uniqueness of
the solution.

Theorem 2 (H1(Ω), ∥.∥J,Ω)) is a real Hilbert space.

Proof: (H1(Ω), ∥.∥1,Ω) is a real Hilbert space
and ∥.∥1,Ω and ∥.∥J,Ω are equivalent norms, then
(H1(Ω), ∥.∥J,Ω)) is a real Hilbert space. ⊓⊔

Theorem 3 B satisfies the inf-sup condition: there
exists a constant β > 0 such that:

sup
−→v ∈H1(Ω)

B(−→v , q)
∥−→v ∥J,Ω

≥ β∥q∥0,Ω. (16)

for all q ∈ L2
0(Ω).

Proof. The same proof of [2] it suffices to see that
H1

0 (Ω) ⊂ H1(Ω) and ∥−→v ∥J,Ω = |−→v |1,Ω in H1
0 (Ω).

We define the ”big” symmetric bilinear form

C[(−→u , p); (−→v , q)] = A(−→u ,−→v ) +B(−→u , q)
+B(−→v , q) (17)

And the corresponding function F (−→v , q) = L(−→v )
choosing the successive test vectors (−→v , 0) and
(
−→
0 , q) shows that the Stokes problem (12) can be

rewritten in the form:
Find (−→u , p) ∈ H1(Ω)× L2

0(Ω) such that

C[(−→u , p); (−→v , q)] = F (−→v , q) (18)

for all (−→v , q) ∈ H1(Ω)× L2
0(Ω). ⊓⊔

The bilinear form A is positive continuous and
H1(Ω)−elliptic and the bilinear form b is continuous
and satisfies the inf-sup condition. Then the problem
(12) is well-posed, and the forms bilinear C and A
satisfies the following propositions.

Proposition 4 for all (−→w , s) ∈ H1(Ω) × L2
0(Ω), we

have

sup
(−→v ,q)∈H1×L2

0

C[(−→u , p); (−→v , q)]
∥−→v ∥J,Ω + ∥q∥0,Ω

≥ δ(∥−→w ∥J,Ω + ∥s∥0,Ω). (19)

Proof . See [1].

Proposition 5 For all (−→w , s) ∈ H1×L2
0(Ω), we have

sup
(−→v ,q)∈H1×L2

0

A(−→w ,−→v ) + d(s, q)

∥−→v ∥J,Ω + ∥q∥0,Ω

≥ 1

2
(∥−→w ∥J,Ω + ∥s∥0,Ω), (20)

where d(s, q) =
∫
Ω sq.

Proof. Let (−→w , q) ∈ H1(Ω) × L2
0(Ω). We will take

q = 0 and −→v = −→w in the first and −→v =
−→
0 and q = s

in the second, we obtain

sup
(−→v ,q)

A(−→w ,−→v ) + d(s, q)

∥−→v ∥J + ∥q∥0
≥ ∥−→w ∥J , (21)

sup
(−→v ,q)

A(−→w ,−→v ) + d(s, q)

∥−→v ∥J + ∥q∥0
≥ ∥s∥0,Ω, (22)

we gather (21) and (22) to get (20). ⊓⊔
The bilinear form A is symmetric and continuous

and semi positive definite on H1(Ω), in this case we
say the problem (12) is a type of saddle-point prob-
lem. The results (13)-(16) ensure the existence and
uniqueness of the solution of the problem (12) (see
Theorem 6. 2 in [1]). In the following section we will
solve this problem by mixed finite element method.

5 Mixed finite element approxima-
tion

Let Th;h ≥ 0,be a family of rectangulations of Ω.
For any T ∈ Th, ωT is of rectangles sharing at least
one edge with element T, ω̃T is the set of rectangles
sharing at least one vertex with T . Also, for an el-
ement edge E, ωE denotes the union of rectangles
sharing E,, while ω̃E is the set of rectangles shar-
ing at least one vertex whit E. Next,∂T is the set
of the four edges of T we denote by ε(T ) and NT

the set of its edges and vertices, respectively. We let
εh =

∪
T∈Tk

ε(T ) denotes the set of all edges split
into interior and boundary edges. εh = εh,Ω

∪
εh,Γ

where
εh,Ω = {E ∈ εh : E ⊂ Ω}

εh,Γ = {E ∈ εh : E ⊂ ∂Ω}

We denote by hT the diameter of a simplex, by hE
the diameter of a face E of T , and we set h =
maxT∈Tk

{hT }. A discrete weak formulation is de-
fined using finite dimensional spaces X1

h ⊂ H1(Ω)

and Mh ⊂ L2
0(Ω).
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The discrete version of (12) is:
find −→u h ∈ X1

h and ph ∈Mh such that :
A(−→u h,

−→v h) +B(−→v h, ph) = L(−→v h),
B(−→v h, ph),= 0

(23)

for all −→v h ∈ X1
h and qh ∈Mh.

We use a set of vector-valued basis functions
{−→φi}i,j=1,...,nu so that

−→u h =
nu∑
j=1

uj−→φj (24)

We introduce a set of pressure basis functions
{ψk}k=1,...,np and set

ph =

np∑
k=1

pkψk (25)

where nu and np are the numbers of velocity and pres-
sure basis functions, respectively.

We find that the discrete formulation (23) can be
expressed as a system of linear equations(

A0 BT
0

B0 0

)(
U
P

)
=

(
f
0

)
. (26)

The system is referred to as the discrete Newton prob-
lem. The matrixA0 is the vector Laplacian matrix and
B0 is the divergence matrix

A0 = [ai,j ]; (27)

ai,j =

∫
Ω
∇−→φ i : ∇−→φ j +

∫
∂Ω

a

b
−→φ i.
−→φ j .

B0 = [bk,j ]; bk,j = −
∫
Ω
ψk∇.−→φ j (28)

f = [fi]; fi = ν

∫
Ω

−→
f .−→φ i +

∫
∂Ω

1

b
−→
t −→φ i (29)

for i, j = 1, ..., nu, k = 1, ..., np, and the function
pair (−→uh, ph) obtained by substituting the solution vec-
tors U ∈ IRnu and P ∈ IRnp into (24) and (25) is the
mixed finite element solution. The system (26)-(29)
is henceforth referred to as the discrete stokes prob-
lem. We use the iterative methods Minimum Residual
Method (MINRES) for solving the symmetric system.

6 A Posteriori error estimator

In this section, we propose two types of a posteriori
error indicator; The first one is the residual error esti-
mator and the second one is the local Poisson problem
estimator. Which are shown to give global error esti-
mates that are equivalent to the true error.

6.1 A Residual error estimator

The bubble functions on the reference element T̃ =
(0, 1)× (0, 1) are defined as follows

b
T̃
= 24x(1− x)y(1− y),

b
Ẽ1,T̃

= 22x(1− x)(1− y),
b
Ẽ2,T̃

= 22y(1− y)x,
b
Ẽ3 T̃

= 22y(1− x)x,
b
Ẽ4,T̃

= 22y(1− y)(1− x).

Here; b
T̃

is the reference element bubble function,
and b

Ẽi,T̃
, i=1:4 are reference edge bubble functions.

For any T ∈ Th , the element bubble functions is
bT = b

T̃
◦FT and the element edge bubble function is

bEi,T = b
Ẽi,T̃
◦ FT where FT the affine map form T̃

to T.
For an interior edge E ∈ εh,Ω, bE is defined

piecewise, so that bE/Ti
= bE,Ti , i=1:2 , where E =

T 1 ∩ T 2. For a boundary edge E ∈ εh,Γ, bE = bE,T ,
where T is the rectangle such that E ∈ ∂T.

With these bubble functions, ceruse et al ([19],
lemma 4.1) established the following lemma.

Lemma 6 Let T be an arbitrary rectangle in τh and
E ∈ ∂T . For any −→v T ∈ Pk0(T ) and −→v E ∈ Pk1(E),
the following inequalities hold.

ck∥−→v T ∥0,T ≤ ∥−→v T b
1
2
T ∥0,T ≤ Ck∥−→v T ∥0,T (30)

|−→v T bT |1,T ≤ Ckh
−1
T ∥−→v T ∥0,T (31)

ck∥−→v E∥0,E ≤ ∥−→v Eb
1
2
E∥0,E ≤ Ck∥−→v E∥0,E (32)

∥−→v EbE∥0,T ≤ Ckh
1
2
E∥−→v E∥0,E (33)

|−→v EbE |1,T ≤ Ckh
− 1

2
E ∥−→v E∥0,E , (34)

where ck and Ck are tow constants which only de-
pend on the element aspect ratio and the polynomial
degrees k0 and k1.

Here, k0 and k1 are fixed and ck andCk can be as-
sociated with generic constants c and C. In addition,
−→v E which is only defined on the edge E also denotes
its natural extension to the element T. From the in-
equalities (33) and (34) we will establish the follow-
ing lemma:
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Lemma 7 Let T be an rectangle and E ∈ ∂T
∩
εh,Γ.

For any −→v E ∈ Pk1(E), the following inequalities
hold.

∥−→v EbE∥J,T ≤ Ch
− 1

2
E ∥−→v E∥0,E . (35)

Proof. Since −→v EbE =
−→
0 in the other three edges of

rectangle T, it can be extended to the whole of Ω by
setting −→v EbE =

−→
0 in Ω\T , then

∥−→v EbE∥1,T = ∥−→v EbE∥1,Ω
and ∥−→v EbE∥J,T = ∥−→v EbE∥J,Ω.

Using the inequalities (13), (33) and (34), gives

∥−→v EbE∥J,T = ∥−→v EbE∥J,Ω
≤ c2∥−→v EbE∥1,Ω
= c2∥−→v EbE∥1,T
= c2(∥−→v EbE∥20,T + |−→v EbE |21,T )

1
2

≤ c2Ck(hE + h−1
E )

1
2 ∥−→v E∥0,E

≤ c2Ck(D
2 + 1)

1
2h

− 1
2

E ∥−→v E∥0,E

≤ Ch
− 1

2
E ∥−→v E∥0,E

with D is the diameter of Ω and C = c2Ck(D
2+1)

1
2 .

⊓⊔

Lemma 8 Clement interpolation estimate: Given
−→v ∈ H1(Ω), let −→v h ∈ X1

h be the quasi-interpolant
of−→v defined by averaging as in [20]. For any T ∈ Th
and for all E ∈ ∂T ,

∥−→v −−→v h∥0,T ≤ ChT |−→v |1,ω̃T
(36)

∥−→v −−→v h∥0,E ≤ Ch
1
2
E |−→v |1,ω̃E

. (37)

We let (−→u , p) denote the solution of (12) and let
(−→u h, ph) denote the solution of (23) with an approxi-
mation on a rectangular subdivision Th.

Our aim is to estimate the velocity and the pres-
sure errors −→u − −→u h ∈ H1(Ω) and p − ph ∈ L2

0(Ω).
The element contribution ηR,T of the residual error es-
timator ηR is given by

η2R,T = h2T ∥
−→
RT ∥20,T + ∥RT ∥20,T

+
∑

E∈∂T
hE∥
−→
RE∥20,E (38)

and the components in (38) are given by

−→
RT = {−→f +∇2−→u h −∇ph}|T ,

RT = {∇.−→u h}|T ,

R⃗E =

{
1
2 [|∇u⃗h − phI|] if E ∈ εh,Ω

1
b
−→
t − [ab

−→u h + (∇−→u h − phI)−→n ] if E ∈ εh,Γ

With the key contribution coming from the stress jump
associated with an edge E adjoining elements T and S:

[[∇−→u h − phI]]

= ((∇−→u h − phI)|T − (∇−→u h − phI)|S)−→n E,T .

The global residual error estimator is given by:

ηR = (
∑

T∈τh η
2
R,T )

1
2 .

Our aim is to bound ∥−→u − −→u h∥X and ∥p − ph∥M
with respect to the norm ∥.∥J for velocity
∥−→v ∥X = ∥−→v ∥J,Ω and the quotient norm for
the pressure ∥p∥X = ∥p∥0,Ω.
For any T ∈ Th, and E ∈ ∂T , we define the
following two functions:

−→w T =
−→
RT bT ; −→wE =

−→
REbE

• −→w T =
−→
0 on ∂T.

• If E ∈ ∂T ∩ εh,Ω
then −→wE =

−→
0 on ∂ωE ,

• If E ∈ ∂T ∩ εh,Γ then −→wE =
−→
0 in the other three

edges of rectangle T.
• −→w T and −→wE can be extended to whole of Ω

by setting:
−→w T =

−→
0 in Ω− T

−→wE =
−→
0 in Ω− ωE if E ∈ ∂T ∩ εh,Ω.

−→w T =
−→
0 in Ω− T if E ∈ ∂T ∩ εh,Γ.

With these two functions we have the following
lemmas:

Lemma 9 For any T ∈ Th we have:∫
T

−→
f .−→w T =

∫
T
(∇−→u − pI) : ∇−→w T (39)

Proof. By applying the Green formula and −→w T =
−→
0

on ∂T, and using (1) we obtain∫
T
(∇−→u − pI) : ∇−→w T =

∫
T
(−∇2−→u +∇p).−→w T

+

∫
∂T

(∇−→u − pI)−→n−→w T

=

∫
T

−→
f .−→w T .

Lemma 10 i) if E ∈ ∂T ∩ εh,Ω,we have:∫
ωE

−→
f .−→wE =

∫
ωE

(∇−→u − pI) : ∇−→wE . (40)
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ii) if E ∈ ∂T ∩ εh,Γ,we have:∫
T

−→
f .−→wE =

∫
T
(∇−→u − pI) : ∇−→wE

+

∫
∂T

(
a

b
−→u − 1

b
−→
t ).−→wE . (41)

Proof. i) The same proof of (39).
ii) if E ∈ ∂T ∩ εh,Γ, we have: Using (1) gives∫

T

−→
f .−→wE =

∫
T
(−∇2−→u +∇p).−→wE .

By applying the Green formula, we obtain∫
T

−→
f .−→wE =

∫
T
(∇−→u − pI) : ∇−→wE

−
∫
∂T

(
∂−→u
∂n
−−→n p).−→wE .

Since −→wE =
−→
0 in the other three edges of rectangle

T and we have by (3), a−→u + b(∂
−→u
∂n −

−→n p) = −→t in E
⊂ ∂T ∩ ∂Ω, then∫

T

−→
f .−→wE =

∫
T
(∇−→u − pI) : ∇−→wE

+

∫
∂T

(
a

b
−→u − 1

b
−→
t ).−→wE

Theorem 11 For any mixed finite element approx-
imation (not necessarily inf-sup stable) defined on
rectangular grids Th, the residual estimator ηR sat-
isfies:

∥−→e ∥J,Ω + ∥ε∥0,Ω ≤ CΩηR

ηR,T ≤ C(
∑

T ′∈ωT

{∥−→e ∥2
J,T ′ + ∥ε∥20,T ′})

1
2 .

Note that the constant C in the local lower bound is
independent of the domain, and
∥−→e ∥2J,T ′ =

∫
T ′ ∇−→e : ∇−→e +

∫
∂T

′ a
b
−→e .−→e and

∥ε∥2
0,T

′ =
∫
T ′ ε2.

Proof: To establish the upper bound we let (−→v , q) ∈
H1(Ω) × L2

0(Ω) and −→v ∈ X1
n be the clement inter-

polant of −→v , then
C[(−→e , ε); (−→v , q)]

= C[(−→e , ε); (−→v −−→v h, q)]

= C[(−→u , p); (−→v −−→v h, q)]

−C[(−→u h, ph); (
−→v −−→v h, q)]

= L(−→v −−→v h)−A(−→u h,
−→v −−→v h)

−B(−→v −−→v h, ph)−B(−→u h, q).

=
∑
T∈Th

{(−→RT ,−→v −−→v h)T

−
∑

E∈ε(T )

(
−→
RE ,−→v −−→v h)E + (RT , q)T }.

≤
∑
T∈Th

{∥−→RT ∥0,T ∥−→v −−→v h∥0,T + ∥RT ∥0,T ∥q∥0,T

+
∑

E∈ε(T )

∥−→RE∥0,E∥−→v −−→v h∥0,E}

≤ (
∑

T∈ Th

h2T ∥
−→
R∥20,T )

1
2 (
∑
T∈Th

1

h2T
∥−→v −−→v h∥20,T )

1
2

+(
∑

T∈ Th

∑
E∈∂T

hE∥
−→
RE∥20,T )

1
2

×(
∑
T∈Th

∑
E∈∂T

1

hE
∥−→v −−→v h∥20,E)

1
2

+(
∑
T∈Th

∥q∥20,T )
1
2 (
∑

T∈ Th

∥∇.−→u h∥20,T )
1
2 .

Using (36) and (37), then gives

C[(−→e , ε); (−→v , q)] ≤ C ′(
∑
T∈τh

∥−→v ∥2J,T + ∥q∥20,T )
1
2

×(
∑

T∈ Th

{h2T ∥
−→
RT ∥20,T+

∑
E∈∂T

hE∥
−→
RE∥20,E+∥RT ∥20,T )

1
2

Finally, using (19), gives:
∥−→e ∥J,Ω + ∥ε∥0,Ω ≤

C
′
(
∑
T∈τh

{h2T ∥
−→
RT ∥20,T+

∑
E∈∂T

hE∥
−→
RE∥20,E+∥RT ∥20,T })

1
2

This establishes the upper bound. Turning to the local
lower bound. First, for the element residual part, we
have ∫

T

−→
RT .−→w T

=

∫
T
(
−→
f +∇2−→u h −∇ph).−→w T

=

∫
T

−→
f .−→w T −

∫
T
(∇−→u h − phI) : ∇−→w T

+

∫
∂T

(∇−→u h − phI)−→n .−→w T

Using (39), (31) and −→w T =
−→
0 in ∂T, give:∫

T

−→
RT .−→w T =

∫
T
(∇−→e − εI) : ∇−→w T

≤ (|−→e |1,T + ∥ε∥0,T )|−→wT |1,T
≤ C(∥−→e ∥2J,T + ∥ε∥20,T )|−→wT |1,T
≤ C(∥−→e ∥2J,T + ∥ε∥20,T )

1
2h−1

T ∥
−→
RT ∥0,T
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In addition, from the inverse inequality (30)∫
T

−→
RT .−→w T = ∥−→RT .b

1
2
T ∥

2
0,T ≥ c∥

−→
RT ∥20,T .

Thus,

h2T ∥
−→
RT ∥20,T ≤ C(∥−→e ∥2J,T + ∥ε∥20,T ). (42)

Next comes the divergence part,

∥RT ∥0,T = ∥∇.−→u h∥0,T
= ∥∇.(−→u −−→u h)∥0,T
≤
√
2|−→u −−→u h|1,T

≤
√

2

ν
∥−→e ∥J,T . (43)

Finally, we need to estimate the jump term. For
an edge E ∈ ∂T ∩ εh,Ω. We have

2

∫
E

−→
RE .−→wE =

∑
i=1:2

∫
∂Ti

(∇−→u h − phI)−→n .−→wE

=

∫
ωE

(∇−→u h − phI) : ∇−→wE

+
∑
i=1:2

∫
Ti

(∇2−→u h −∇ph)−→wE

Using (40) and −→wE =
−→
0 in ∂ωE , gives:

2

∫
E

−→
RE .−→wE = −

∫
ωE

(∇−→e − εI) : ∇−→wE

+
∑
i=1:2

∫
Ti

R⃗Ti
−→wE

≤ (|−→e |1,ωE + ∥ε∥0,ωE )|−→wE |1,wE

+
∑
i=1:2

∥−→RTi∥0,Ti∥−→wE∥0,Ti

Using (33) and (34), give∫
E

−→
RE .−→wE ≤ C(|−→e |21,ωE

+∥ε∥20,ωE
)
1
2h

−1
2

E ∥
−→
RE∥0,E

+
∑
i=1:2

∥−→RTi∥0,Tih
1
2
E∥
−→
RE∥0,E .

Using (42), gives∫
E

−→
RE .−→wE

≤ C(∥−→e ∥2J,ωE
+∥ε∥20,ωE

)
1
2h

−1
2

E ∥
−→
RE∥0,E (44)

Using (32) gives∫
E

−→
RE .−→wE = ∥−→REb

1
2
E∥

2
0,E ≥ c∥

−→
RE∥20,E ,

and thus using (44) gives

hE∥
−→
RE∥20,E ≤ C(∥−→e ∥2J,ωE

+ ∥ε∥20,ωE
). (45)

We also need to show that (45) holds for boundary
edges. For an E ∈ ∂T ∩ εh,Γ, we have∫

E

−→
RE .−→wE

=

∫
∂T

[
a

b
−→u h + (∇−→u h − phI)−→n −

1

b
−→
t ].−→wE

=

∫
∂T

[
a

b
−→u h −

1

b
−→
t ].−→wE

+

∫
T
(∇−→u h − phI) : ∇−→wE

+

∫
T
(∇2−→u h −∇ph).−→wE

Using (41) and (4), gives∫
E

−→
RE .−→wE = −

∫
T
(∇−→e − εI) : ∇−→wE

−
∫
∂T

a

b
−→e −→wE +

∫
T

−→
RT .−→wE

≤ (|−→e |1,T + ∥ε∥0,T )|−→wE |1,T
+β1∥−→e ∥0,∂T ∥−→wE∥0,∂T
+∥−→RT ∥0,T ∥−→wE∥0,T

≤ C(∥−→e ∥J,T + ∥ε∥0,T )∥−→wE∥J,T
+∥−→RT ∥0,T ∥−→wE∥0,T

Using (33) and (35) gives∫
E

−→
RE .−→wE ≤ C ′′(∥−→e ∥J,T + ∥ε∥0,T )h

− 1
2

E ∥
−→
RE∥0,E

+∥−→RT ∥0,Th
1
2
E∥
−→
RE∥0,E .

Using (42) gives∫
E

−→
RE .−→wE ≤ C(∥−→e ∥2J,T + ∥ε∥20,T )

1
2h

−1
2

E ∥
−→
RE∥0,E (46)

Using (32), gives∫
E

−→
RE .−→wE = ∥−→REb

1
2
E∥

2
0,E ≥ c∥

−→
RE∥20,E ,

and thus using (46) gives

hE∥
−→
RE∥20,E ≤ C(∥−→e ∥2J,T + ∥ε∥20,T ). (47)

Finally, combining (42), (43), (45) and (47) estab-
lishes the local lower bound.
Remark. Theorem 11 also holds for stable (and un-

stable) mixed approximations defined on a triangular
subdivision if we take the obvious interpretation of
The Proof is identical except for the need to define
appropriate element and edge bubble functions

WSEAS TRANSACTIONS on MATHEMATICS Jaouad El-Mekkaoui, Ahmed Elkhalfi, Abdeslam Elakkad

E-ISSN: 2224-2880 592 Issue 5, Volume 12, May 2013



6.2 A Local Poisson Problem Estimator

The local Poisson problem estimator:

ηP =
√∑

T∈Th

η2P,T

as follows

η2P,T = ∥e⃗P,T ∥2J,T + ∥εP,T ∥20,T (48)

Let
• VT = H1(T )

•AT (−→e P,T ,−→v ) =
∫
T
∇−→e P,T : ∇−→v +

∫
∂T

a

b
−→e P,T

−→v

e⃗P,T ∈ VT satisfies the uncoupled Poisson problems

AT (−→e P,T ,−→v ) = (R⃗T , v⃗)T −
∑

E∈ε(T )

(R⃗E , v⃗)E (49)

εP,T = ∇.u⃗h/T (50)

for any −→v ∈ VT .

Theorem 12 The estimator ηP,T is equivalent to the
ηR,T estimator:

cηP,T ≤ ηR,T ≤ CηP,T

Proof. For the upper bound, we first let w⃗T =

R⃗T bT (bT is an element interior bubble function).
From (49),

(R⃗T , w⃗T )T = (e⃗P,T , w⃗T )T ≤ |e⃗P,T |1,T .|w⃗T |1,T

Using (31) we get

(R⃗T , w⃗T )T ≤
C

1

hT
∥R⃗∥0,T (∥e⃗P,T ∥2J,T + ∥εP,T ∥20,T )

1
2 (51)

In addition, from the inverse inequalities (30),
∥R⃗∥20,T ≤ C.(R⃗T , w⃗T )T and using (51), to get

h2T ∥R⃗T ∥20,E ≤ C(∥e⃗P,T ∥2J,Ω + ∥εP,T ∥20,T ) (52)

Next, we let w⃗E = R⃗E bE is an edge bubble func-
tion.

If E ∈ ∂T
∩
εh,Γ using (49), (33) and (35) give

(R⃗E , w⃗E)E
= −AT (−→e P,T ,−→wE) + (R⃗T , w⃗E)T

≤ ∥e⃗P,T ∥J,T ∥w⃗E∥J,T + ∥R⃗E∥0,T ∥w⃗E∥0,T

≤ Ch
− 1

2
E ∥R⃗E∥0,E(∥e⃗P,T ∥2J,T + ∥εP,T ∥20,T )

1
2

If E ∈ ∂T
∩
εh,Ω, see that a and b defined just in Γ,

then we can posed a = 0 in Ω− Γ.
Using (49), (33), (34) and (52) give

(R⃗E , w⃗E)E
= −(∇e⃗P,T ,∇w⃗E)T + (R⃗T , w⃗E)T

≤ |e⃗P,T |1,T |w⃗E |1,T + ∥R⃗E∥0,T ∥w⃗E∥0,T

≤ Ch
− 1

2
E ∥R⃗E∥0,T (∥e⃗P,T ∥2J,T + ∥εP,T ∥20,T )

1
2

Finally, for any T ∈ Th and any E ∈ ∂T , we have

(R⃗E , w⃗E)E

≤ Ch
− 1

2
E ∥R⃗E∥0,T (∥e⃗P,T ∥2J,T + ∥εP,T ∥20,T )

1
2 .(53)

From the inverse inequalities (32), ∥R⃗E∥20,E ≤
C.(R⃗E , w⃗E)E and using (53) give

hE∥R⃗E∥20,E ≤ C(∥e⃗P,T ∥2J,T + ∥εP,T ∥20,T ) (54)

We have also

∥RT ∥0,T = ∥∇.u⃗h∥0,T = ∥εP,T ∥0,T
≤ (∥e⃗P,T ∥2J,T + ∥εP,T ∥20,T )

1
2 (55)

Combining (52), (54) and (55), establishes the upper
bound in the equivalence relation. For the lower , we
need to use (20):

ηP,T = (∥e⃗P,T ∥2J,T + ∥εP,T ∥20,T )
1
2

≤ ∥e⃗P,T ∥J,T + ∥εP,T ∥0,T

≤ 2 sup
(v⃗,q)∈VT×L2

0(Ω)

A(e⃗P,T , v⃗) + d(εP,T , q)

∥v⃗∥J,Ω + ∥q∥0,Ω

Using (49) and (50) give

ηP,T ≤ 2 sup
(v⃗,q)∈VT×L2

0(Ω)

λ(−→v , T )
∥v⃗∥J,Ω + ∥q∥0,Ω

≤ 2 sup
(v⃗,q)∈VT×L2

0(Ω)

θ(−→v , T )
∥v⃗∥J,Ω + ∥q∥0,Ω

(56)

where

λ(−→v , T ) = (
−→
RT , v⃗)T −

∑
E∈ε(T )

(
−→
RE , v⃗) + (RT , q)

and

θ(−→v , T ) = ∥R⃗∥0,T ∥v⃗∥0,T +
∑

E∈ε(T )

∥R⃗E∥0,E∥v⃗∥0,E

+∥∇.u⃗h∥0,T ∥q∥0,T
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Now, since v⃗ is zero at the four vertices of T, a scaling
argument and the usual trace theorem, see e.g. [14,
Lemma 1.5], shows that v⃗ satisfies

∥v⃗∥0,E ≤ Ch
1
2
E |v⃗|1,T (57)

∥v⃗∥0,E ≤ ChT |v⃗|1,T (58)

Combining these two inequalities with (56) immedi-
ately gives the lower bound in the equivalence relation

Theorem 13 For any mixed finite element approx-
imation (not necessarily inf-sup stable) defined on
rectangular grids Th the estimator ηP satisfies:

∥e⃗∥J,Ω + ∥ε∥0,Ω ≤ CηP

and

ηP,T ≤ C(
∑
T∈Th

{∥e⃗∥2J,T ′ + ∥ε∥20,T ′)
1
2

Note that the constant C in the local lower bound is
independent of the domain.

7 Numerical simulation

In this section some numerical results of calculations
with mixed finite element Method will presented in
two examples [14, 16].

Example 14 Square domain, enclosed flow boundary
condition.

This is a classic test problem used in fluid dynam-
ics, known as driven-cavity flow. It is a model of the
flow in a square cavity with the lid moving from left
to right. Let the computational model:
{y = 1;−1 ≤ x ≤ 1/ux = 1−x2}, a regularized

cavity.
The Ca,b condition is satisfied, just take a and b

two real number strictly positive such that a ≻≻ b,−→
t = (a(1 − x2); 0) on Γ1 = (y = 1;−1 ≤ x ≤ 1)

and −→t = (0; 0) on the other three boundary of the
square domain.

The streamlines are computed from the velocity
solution by solving the Poisson equation numerically
subject to a zero Dirichlet boundary condition.

Fig. 1. Uniform streamline plot by MFE (left)
associated with a 64× 64 square grid, P1 − P0

approximation, and uniform streamline plot (right)
computed with ADINA system.

Fig. 2. Velocity vectors solution by MFE (left)
associated with a 64× 64 square grid, P1 − P0
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approximation and velocity vectors solution (right)
computed with ADINA system.

Fig. 3. Pressure plot for the flow with a 64× 64
square grid.

Table 1. ηR is the residual error es-
timator and ηP is the local Poisson prob-
lem error estimator for a colliding flow.

grid ηR ηP
8× 8 2.616759 e-001 8.722532e-001
16× 16 1.695069e-001 6.053819e-001
32× 32 1.020879e-001 3.781035e-001
64× 64 6.063286e-002 2.220984e-001

Example 15 Square domain Ω, analytic solution.
This analytic test problem is associated with the fol-
lowing solution of the Stokes equation system:

ux = 20xy3; uy = 20x4 − 5y4; (59)

p = 60x2y − 20y3 + constant.

It is a simple model of colliding flow, and a typ-
ical solution of streamline is illustrated in Figure 4.
To solve this problem numerically, the finite element
interpolant of the velocity in (59) is specified every-
where on ∂Ω. The Dirichlet boundary condition for
the stream function calculation is the interpolant of
the exact stream function: ψ(x, y) = 5xy4 − x5.
See that the Ca,b condition is satisfied with a ≻≻ b

a real number very large and −→t = (20axy3; (20x4 −
5y4)a) on Γ

Fig. 4. Uniform streamline plot by MFE associated
with a 64× 64 square grid.

Fig. 5. Pressure plot for the flow with a 64× 64
square grid.

Fig. 6. Estimated error ηP,T associated with 64× 64
square grid.

Figure 5 shows the pressure plot and figure 6
shows the estimated error associated with 64 × 64
square grid.
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Table 2. ηR is the residual error estimator and
ηP is the local Poisson problem error estimator for a
colliding flow.

grid ηR ηP
8× 8 2.371793e+000 8.147694e+000
16× 16 1.303621e+000 4.599936e+000
32× 32 7.205132e-001 2.401784e+000
64× 64 3.407043e-001 1.218978e+000

8 Conclusion

In this work, we were interested in the numerical solu-
tion of the partial differential equations by simulating
the flow of an incompressible fluid. We introduced
the Stokes equations with a new boundary condition
noted Ca,b.

The weak formulation obtained is a problem of
saddle point type. We have shown the existence and
uniqueness of the solution of this problem. We used
the discretization by mixed finite element method with
two type of the posteriori error estimation of the com-
puted solutions. Both types proved that the larger the
grid is, the better the approximation is.

Numerical experiments were carried out and
compared with satisfaction with other numerical re-
sults, either resulting from the literature, or resulting
from calculation with commercial software like Adina
system.
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